Random Vs Regularized OPV: Limits of Performance Gain of Organic Bulk Heterojunction Solar Cells by Morphology Engineering
نویسندگان
چکیده
Inexpensive solution processing of bulk heterojunction (BHJ) type organic photovoltaic (OPV) cells offers an attractive option for the low cost solar energy conversion. Solution processing creates a disordered morphology consisting of two organic semiconductors, intermixed randomly within the light-absorbing layer of the cell. In this paper, we use a detailed three-dimensional process-device comodeling framework to show that in spite of the inherent structural randomness of the morphology, the efficiency of solution-processed BHJ cells is nearly optimal – close to those of the perfectly ordered structures. In addition, we show that the morphological randomness by itself does not increase the performance variability of large-area cells. Both the results indicate that the inexpensive solution processing of BHJ cells imposes no inherent limitation on the performance/variability and the ultimate efficiency of such solution-processed films should compare favorably to the other ordered OPV cells fabricated by more expensive techniques. Finally, we explore the theoretical optimum morphology for BHJ cells and find that fill factor is the only parameter through which efficiency can be enhanced by morphology engineering. We conclude by exploring the performance gains/limits of organic solar cells with the improvement in transport parameters. Published by Elsevier B.V.
منابع مشابه
The essence and efficiency limits of bulk-heterostructure organic solar cells: A polymer-to-panel perspective
Bulk-heterojunction organic photovoltaic (BHJ-OPV) technology promises high efficiency at ultralow cost and weight, with potential for nontraditional applications such as building-integrated photovoltaic (PV). There is a widespread presumption that the complexity of morphology makes carrier transport in OPV irreducibly complicated and, possibly, beyond predictive modeling. However, understandin...
متن کاملThe Essence and Efficiency Limits of Bulk-Heterostructure Organic Solar Cells
Since its introduction in early 1990s, bulk-heterojunction organic photovoltaic solar cell (BHJ-OPV) has promised high-efficiency at ultra-low cost and weight, with potential for nontraditional applications such as building-integrated PV. There is a widespread presumption, however, that the complexity of morphology makes carrier transport in OPV irreducibly complicated, and possibly, beyond pre...
متن کاملMorphological Control Agent in Ternary Blend Bulk Heterojunction Solar Cells
Bulk heterojunction (BHJ) organic photovoltaic (OPV) promise low cost solar energy and have caused an explosive increase in investigations during the last decade. Control over the 3D morphology of BHJ blend films in various length scales is one of the pillars accounting for the significant advance of OPV performance recently. In this contribution, we focus on the strategy of incorporating an ad...
متن کاملHigh Efficiencies in Nanoscale Poly(3-Hexylthiophene)/Fullerene Solar Cells
A modified morphology was introduced for poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester (P3HT:PC71BM) bulk heterojunction (BHJ) solar cells by thermal and solvent annealing treatments in the presence of hydrophilic-hydrophobic block copolymers. Power conversion efficiency (PCE) plummet was prohibited during both thermal and solvent treatments for all BHJ devices modified wit...
متن کاملA compact physical model for morphology induced intrinsic degradation of organic bulk heterojunction solar cell
The gradual loss of efficiency during field operation poses a fundamental challenge for economic viability of any solar cell technology. Well known examples include light-induced degradation in Si-based cell (Staebler-Wronski effect), Cu diffusion in thin film (copper indium gallium selenide) cell, hot-spot degradation in series connected modules, etc. Here we develop a compact model for an int...
متن کامل